Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai.

نویسندگان

  • Kenji Narusuye
  • Tatsumi Nagahama
چکیده

The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic modulation contributes to firing pattern generation in jaw motor neurons during rejection of seaweed in Aplysia kurodai.

Japanese species, Aplysia kurodai, feeds well on Ulva but rejects Gelidium (Geli.) or Pachydictyon (Pach.) with different rhythmic patterned movements of the jaws and radula. During ingestion the jaws open at the radula-protraction phase and remain half open at the initial phase of the radula-retraction, whereas during rejection the jaws open similarly but start to close immediately after the o...

متن کامل

An identified histaminergic neuron modulates feeding motor circuitry in Aplysia.

An identified histaminergic neuron, C2, in the marine mollusk Aplysia is a complex mechanoafferent which appears to contribute to the maintenance of food arousal by means of its synaptic connections to the metacerebral cell (MCC). Because C2 also has extensive synaptic outputs to neurons other than the MCC, we studied its possible motor functions. We identified several synaptic followers of C2 ...

متن کامل

Identification and Characterization of a 25 kDa Protein That Is Indispensable for the Efficient Saccharification of Eisenia bicyclis in the Digestive Fluid of Aplysia kurodai

The digestive fluid of the sea hare Aplysia kurodai can liberate approximately 2.5 mg of glucose from 10 mg of dried Eisenia bicyclis powder. Although laminaran, a major storage polysaccharide in E. bicyclis, is easily digested to glucose by the synergistic action of the 110 and 210 kDa A. kurodai β-glucosidases (BGLs), glucose is not liberated from E. bicyclis by direct incubation with these B...

متن کامل

Overexpression and RNA interference of Ap-cyclic AMP-response element binding protein-2, a repressor of long-term facilitation, in Aplysia kurodai sensory-to-motor synapses.

cyclic AMP-response element binding protein-2 (CREB2) is a member of the CREB/transcription factor (CREB/ATF4) family. CREB2 is a transcription factor known to be involved in Aplysia long-term facilitation. To further examine the role of ApCREB2 on long-term synaptic facilitation, we isolated ApCREB2 from Aplysia kurodai in full-length cDNA library, and found that the overexpression of ApCREB2 ...

متن کامل

Structure of β-1,4-mannanase from the common sea hare Aplysia kurodai at 1.05 Å resolution.

β-1,4-Mannanase (EC 3.2.1.78) catalyzes the hydrolysis of β-1,4-glycosidic bonds within mannan, a major constituent group of the hemicelluloses. Bivalves and gastropods possess β-1,4-mannanase and may degrade mannan in seaweed and/or phytoplankton to obtain carbon and energy using the secreted enzymes in their digestive systems. In the present study, the crystal structure of AkMan, a gastropod ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2002